Пояснительная записка По химии 10 класс

Рабочая программа учебного курса по химии для 10 класса (углубленный уровень) разработана на основе:

Федеральный закон от 29.12.2012 № 273-ФЗ (ред. от 31.07.2020) «Об образовании в Российской Федерации» (с изм. и доп., вступ. в силу с 01.09.2020) — URL: http://www.consultant.ru/document/cons_doc_LAW_140174 (дата обращения: 10.04.2020).

- 2. Паспорт национального проекта «Образование» (утверждена президиумом Совета при Президенте РФ по стратегическому развитию и национальным проектам, протокол от 24.12.2018 N 16) URL: / http://do.sev.gov.ru/images/document/Pasport_naciona_proekta_Jbrazovanie_compressed.pdf (дата обращения: 10.04.2021).
- 3. Государственная программа Российской Федерации «Развитие образования» (утверждена Постановлением Правительства РФ от 26.12.2017 N 1642 (ред. от 22.02.2021) «Об утверждении государственной программы Российской Федерации «Развитие образования» URL: http://www.consultant.ru document cons_doc_LAW_286474 (дата обращения: 10.04.2021).
- 4. Профессиональный стандарт «Педагог (педагогическая деятельность в дошкольном, начальном общем, основном общем, среднем общем образовании), (воспитатель, учитель)» (ред. от 16. 06. 2019 г.) (Приказ Министерства труда и социальной защиты РФ от 18 октября 2013г. № 544н, с изменениями, внесёнными приказом Министерства труда и соцзащиты РФ от 25 декабря 2014 г. № 1115н и от 5 августа 2016 г. № 422н) URL: // http://профстандартпедагога.рф (дата обращения: 10. 04. 2021).
- 5. Профессиональный стандарт «Педагог дополнительного образования детей и взрослых» (Приказ Министерства труда и социальной защиты РФ от 5 мая 2018 г. N 298н «Об утверждении профессионального стандарта «Педагог дополнительного образования детей и взрослых») URL: //https://profstandart.rosmintrud.ru/obshchiy-informatsionnyyblok/natsionalnyy-reestr-professionalnykh-standartov/reestr-professionalnykh-standartov/index.php?ELEMENT_ID=48583 (дата обращения: 10. 04. 2021).
- 6. Федеральный государственный образовательный стандарт основного общего образования (утверждён приказом Министерства образования и науки Российской Федерации от 17 декабря 2010 г. N 1897) (ред. 21. 12. 2020) URL: https://fgos.ru (дата обращения: 10. 04. 2021).
- 7. Федеральный государственный образовательный стандарт среднего общего образования (утверждён приказом Министерства образования и науки Российской Федерации от 17 мая 2012 г. N 413) (ред.11. 12. 2020) URL: https://fgos.ru (дата обращения: 10. 04. 2021).
- 8. Методические рекомендации по созданию и функционированию детских технопарков «Кванториум» на базе общеобразовательных организаций (утверждены распоряжением Министерства просвещения Российской Федерации от 12 января 2021 г. N P-4) URL: http://www.consultant.ru/document/cons_doc_LAW_374695/ (дата обращения: 10. 04 .2021).
- 9. Примерной программы по химии 10-11 классы. М.: «Просвещение», 2010;
- 10. О.С.Габриелян, А.В.Купцова. Программа Химия: 10-11 классы. Москва: «Дрофа», 2014 (модифицированная, Ж.Ю.Медникова, 2017).

Изучение химии призвано обеспечить:

1) формирование системы химических знаний как компонента естественнонаучной картины мира;

- 2) развитие личности обучающихся, их интеллектуальное и нравственное совершенствование, формирование у них гуманистических отношений и экологически целесообразного поведения в быту и трудовой деятельности;
- 3) выработку у обучающихся понимания общественной потребности в развитии химии, а также формирование у них отношения к химии как возможной области будущей практической деятельности;
- 4) формирование умений безопасного обращения с веществами, используемыми в повседневной жизни.

Цели, решаемые при реализации рабочей программы:

- формирование у учащихся умения видеть и понимать ценность образования, значимость химического знания для каждого человека, независимо от его профессиональной деятельности;
- формирование у учащихся умений различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определенной системой ценностей, формулировать и обосновывать собственную позицию;
- формирование у учащихся целостного представления о мире и роли химии в создании современной естественнонаучной картины мира; умения объяснять объекты и процессы окружающей действительности природной, социальной, культурной, технической среды, используя для этого химические знания;
- приобретение учащимися опыта разнообразной деятельности, опыта познания и самопознания; ключевых навыков, имеющих универсальное значение для различных видов деятельности (навыков решения проблем, принятия решений, поиска, анализа и обработки информации, коммуникативных навыков, навыков измерений, навыков сотрудничества, навыков безопасного обращения с веществами в повседневной жизни).

Ценностные ориентиры содержания курса химии в средней (полной) школе определяются спецификой химии как науки. Ведущую роль играют познавательные ценности, так как химия входит в группу предметов познавательного цикла, главная цель которых заключается в изучении природы.

Основу познавательных ценностей составляют научные знания, научные методы познания, а ценностные ориентации, формируемые у учащихся в процессе изучения химии, проявляются:

- в признании ценности научного знания, его практической значимости, достоверности;
- в ценности химических методов исследования живой и неживой природы;
- в понимании сложности и противоречивости самого процесса познания как извечного стремления к Истине.

В качестве объектов ценностей труда и быта выступают творческая созидательная деятельность, здоровый образ жизни, а ценностные ориентации содержания курса химии могут рассматриваться как формирование:

- уважительного отношения к созидательной, творческой деятельности;
- понимания необходимости здорового образа жизни;
- потребности в безусловном выполнении правил безопасного использования веществ в повседневной жизни;
- сознательного выбора будущей профессиональной деятельности.

Курс химии обладает возможностями для формирования

коммуникативных ценностей, основу которых составляют процесс общения, грамотная речь.

Ценностные ориентации курса направлены на воспитание у учащихся:

- правильного использования химической терминологии и символики;
- потребности вести диалог, выслушивать мнение оппонента, участвовать в дискуссии;
- способности открыто выражать и аргументировано отстаивать свою точку зрения.

Общая характеристика учебного предмета:

Особенности содержания обучения химии в средней (полной) школе обусловлены спецификой химии, как науки, и поставленными задачами. Основными проблемами химии являются изучение состава и строения веществ, зависимости их свойств от строения, получение веществ с заданными свойствами, исследование закономерностей химических реакций и путей управления ими в целях получения необходимых человеку веществ, материалов, энергии. Поэтому в рабочей программе по химии нашли отражение основные содержательные линии:

- «Вещество» знания о составе и строении веществ, их важнейших физических и химических свойствах, биологическом действии;
- «Химическая реакция» знания об условиях, в которых проявляются химические свойства веществ, способах управления химическими процессами;
- «Применение веществ» знания и опыт практической деятельности с веществами, которые наиболее часто употребляются в повседневной жизни, широко используются в промышленности, сельском хозяйстве, на транспорте;
- «Язык химии» система важнейших понятий химии и терминов, в которых они описываются, номенклатура неорганических и органических веществ, т. е. их названия (в том числе и тривиальные), химические формулы и уравнения, а также правила перевода информации с русского языка на язык химии и обратно.

Изучение предмета «Химия» в части формирования у учащихся научного мировоззрения, освоения общенаучных методов (наблюдение, измерение, эксперимент, моделирование), освоения практического применения научных знаний основано на межпредметных связях с предметами: «Биология», «География», «История», «Литература», «Математика», «Основы безопасности жизнедеятельности», «Русский язык», «Физика», «Экология».

Количество часов в год: 102 Количество часов в неделю: 3

Количество практических работ - 10 Количество контрольных работ: 7

Форма промежуточного контроля знаний обучающихся:

- контрольные работы с развернутым ответом и в тестовой форме, в ходе проведения которых проверяются теоретические и практические навыки и умения.

Содержание учебного предмета «Химия» в 10 классе

Введение (4 часов)

Предмет органической химии. Особенности строения и свойств органических соединений. Значение и роль органической химии в системе естественных наук и в жизни общества. *Краткий очерк истории развития органической химии*.

Предпосылки создания теории строения: теория радикалов и теория типов, работы А. Кекуле, Э. Франкланда и А. М. Бутлерова, съезд врачей и естествоиспытателей в г.Шпейере. Основные положения теории строения органических соединений А. М. Бутлерова. Химическое строение и свойства органических веществ. Изомерия на примере н-бутана и изобутана.

Электронное облако и орбиталь, их формы: s- и p-. Электронные и электроннографические формулы атома углерода в нормальном и возбужденном состояниях. Ковалентная химическая связь и ее разновидности: σ - и π -. Образование молекул H_2 , Cl_2 , N_2 , HCl, H_2O , NH_3 , CH_4 , C_2H_4 , C_2H_2 . Водородная связь. Образование ионов NH_4^+ и H_3O^+ . Сравнение обменного и донорно-акцепторного механизмов образования ковалентной связи.

Первое валентное состояние — sp3-гибридизация — на примере молекулы метана и других алканов. Второе валентное состояние — sp2-гибридизация — на примере молекулы этилена. Третье валентное состояние — sp-гибридизация — на примере молекулы ацетилена. Геометрия молекул этих веществ и характеристика видов ковалентной связи в них. Модель Гиллеспи для объяснения взаимного отталкивания гибридных орбиталей и их расположения в пространстве с минимумом энергии.

Демонстрации. Коллекция органических веществ, материалов и изделий из них. Модели молекул CH_4 и CH_3OH ; C_2H_2 , C_2H_4 и C_6H_6 ; н-бутана и изобутана. Взаимодействие натрия с этанолом и отсутствие взаимодействия с диэтиловым эфиром. Коллекция полимеров, природных и синтетических каучуков, лекарственных препаратов, красителей. Шаростержневые и объемные модели молекул H_2 , Cl_2 , N_2 , H_2O , CH_4 . Шаростержневые и объемные модели CH_4 , C_2H_4 , C_2H_2 . Модель отталкивания гибридных орбиталей, выполненная с помощью воздушных шаров.

Тема 1. Строение и классификация органических соединений (5 часов)

Классификация органических соединений по строению углеродного скелета: ациклические (алканы, алкены, алкины, алкадиены), карбоциклические (циклоалканы и арены) и гетероциклические. Классификация органических соединений по функциональным группам: спирты, фенолы, простые эфиры, альдегиды, кетоны, карбоновые кислоты, сложные эфиры.

Тривиальные названия веществ. Номенклатура рациональная и ИЮПАК (IUPAC). Принципы образования названий органических соединений по ИЮПАК: замещения, родоначальной структуры, старшинства характеристических групп.

Структурная изомерия и ее виды: изомерия «углеродного скелета», изомерия положения (кратной связи и функциональной группы), межклассовая изомерия. Пространственная изомерия и ее виды: геометрическая и оптическая. Биологическое значение оптической изомерии. Отражение особенностей строения молекул геометрических и оптических изомеров в их названиях.

Демонстрации. Образцы представителей различных классов органических соединений и шаростержневые или объемные модели их молекул. Таблицы «Название алканов и алкильных заместителей» и «Основные классы органических соединений».

Модели молекул изомеров разных видов изомерии.

Лабораторные опыты. 1. Изготовление моделей молекул веществ — представителей различных классов органических соединений.

Тема 2. Реакции органических соединений (3 часов)

Понятие о реакциях замещения. Галогенирование алканов и аренов, щелочной гидролиз галогеналканов.

Понятие о реакциях присоединения. Гидрирование, гидрогалогенирование, галогенирование. Реакции полимеризации иполиконденсации.

Понятие о реакциях отщепления (элиминирования). Дегидрирование алканов. Дегидратация спиртов. Дегидрохлорирование на примере галогеналканов. Понятие о крекинге алканов и деполимеризации полимеров.

Реакции изомеризации.

Гомолитический и гетеролитический разрыв ковалентной химической связи; образование ковалентной связи по донорно-акцепторному механизму. Понятие о нуклеофиле и электрофиле. Классификация реакций по типу реагирующих частиц (нуклеофильные и электрофильные) и принципу изменения состава молекулы. Взаимное влияние атомов в молекулах органических веществ. Индуктивный и мезомерный эффекты. Правило Марковникова.

Расчетные задачи. 1. Вычисление выхода продукта реакции от теоретически возможного. 2. Комбинированные задачи.

Демонстрации. Взрыв смеси метана с хлором. Обесцвечивание бромной воды этиленом и ацетиленом. Получение фенолоформальдегидной смолы и полимера.

Деполимеризация полиэтилена. Получение этилена из этанола. Крекинг керосина.

Взрыв гремучего газа. Горение метана или пропан-бутановой смеси (из газовой зажигалки). Взрыв смеси метана или пропан-бутановой смеси с кислородом (воздухом).

Тема 3. Углеводороды (27 часа)

Понятие об углеводородах.

А л к а н ы. Гомологический ряд и общая формула алканов. Строение молекулы метана и других алканов. Изомерия алканов. Физические свойства алканов. Алканы в природе. Промышленные способы получения: крекинг алканов, фракционная перегонка нефти. Лабораторные способы получения алканов: синтез Вюрца, декарбоксилирование солей карбоновых кислот, гидролиз карбида алюминия. Реакции замещения. Горение алканов в различных условиях. Термическое разложение алканов. Изомеризация алканов. Применение алканов. Механизм реакции радикального замещения, его стадии. Практическое использование знаний о механизме (свободно-радикальном) реакций в правилах техники безопасности в быту и на производстве.

А л к е н ы. Гомологический ряд и общая формула алкенов. Строение молекулы этилена и других алкенов. Изомерия алкенов: структурная и пространственная. Номенклатура и физические свойства алкенов. Получение этиленовых углеводородов из алканов, галогеналканов, спиртов. Поляризация π -связи в молекулах алкенов на примере пропена. Понятие об индуктивном (+I) эффекте на примере молекулы пропена. Реакции присоединения (галогенирование, гидрогалогенирование, гидратация, гидрирование). Реакции окисления и полимеризации алкенов. Применение алкенов на основе их свойств. Механизм реакции электрофильного присоединения к алкенам. Окисление алкенов в «мягких» и «жестких» условиях.

Демонстрации. Получение метана из ацетата натрия и гидроксида натрия. Модели молекул алканов — шаростержневые и объемные. Горение метана, пропан-бутановой смеси, парафина в условиях избытка и недостатка кислорода. Взрыв смеси метана с воздухом. Отношение метана, пропан-бутановой смеси, бензина, парафина к бромной воде и раствору перманганата калия. Взрыв смеси метана и хлора, инициируемый освещением. Вос становление оксида меди (II) парафином.

Шаростержневые и объемные модели молекул структурных и пространственных изомеров алкенов. Объемные модели молекул алкенов. Получение этена из этанола.

Обесцвечивание этеном бромной воды. Обесцвечивание этеном раствора перманганата калия. Горение этена.

Получение ацетилена из карбида кальция. Взаимодействие ацетилена с бромной водой. Взаимодействие ацетилена с раствором перманганата калия. Горение ацетилена. Взаимодействие ацетилена с раствором соли меди или серебра.

Модели (шаростержневые и объемные) молекул алкадиенов с различным взаимным расположением π -связей. Деполимеризация каучука. Модели (шаростержневые и объемные) молекул алкадиенов с различным взаимным расположением π -связей.

Коагуляция млечного сока каучуконосов (молочая, одуванчиков или фикуса).

Шаростержневые модели молекул циклоалканов и алкенов. Отношение циклогексана к раствору перманганата калия и бромной воде. Шаростержневые и объемные модели молекул бензола и его гомологов. Разделение с помощью делительной воронки смеси бензол-вода. Растворение в бензоле различных органических и неорганических (например, серы) веществ. Экстрагирование красителей и других веществ (например, иода) бензолом из водных растворов. Горение бензола. Отношение бензола к бромной воде и раствору перманганата калия. Получение нитробензола.

Коллекция «Природные источники углеводородов». Сравнение процессов горения нефти и природного газа. Образование нефтяной пленки на поверхности воды. Каталитический крекинг парафина. Растворение парафина в бензине и Алкины. Гомологический ряд алкинов. Общая формула. Строение молекулы ацетилена и других алкинов. Изомерия алкинов. Номенклатура ацетиленовых углеводородов. Получение алкинов: метановый и карбидный способы. Физические свойства алкинов. Реакции присоединения: галогенирование, гидрогалогенирование, гидратация (реакция Кучерова), гидрирование. Тримеризация ацетилена в бензол. Окисление алкинов. Особые свойства терминальных алкинов. Применение алкинов.

Алкадиенов. Общая формула алкадиенов. Строение молекул. Изомерия и номенклатура алкадиенов. Физические свойства. Взаимное расположение π-связей в молекулах алкадиенов: кумулированное, сопряженное, изолированное. Особенности строения сопряженных алкадиенов, их получение. Аналогия в химических свойствах алкенов и алкадиенов. Полимеризация алкадиенов. Натуральный и синтетический каучуки. Вулканизация каучука. Резина. Работы С. В. Лебедева. Особенности реакций присоединения к алкадиенам с сопряженными π-связями.

Ц и к л о а л к а н ы. Гомологический ряд и общая формула циклоалканов. Напряжение цикла в C_3H_6 , C_4H_8 и C_5H_{10} , конформации C_6H_{12} . Изомерия циклоалканов (углеродного скелета, цис-транс-, межклассовая). Химические свойства циклоалканов: горение, разложение, радикальное замещение, изомеризация. Особые свойства циклопропана, циклобутана.

А р е н ы. Бензол как представитель аренов. Строение молекулы бензола. Сопряжение π-связей. Изомерия и номенклатура аренов, их получение. Гомологи бензола. Влияние боковой цепи на электронную плотность сопряженного π-облака в молекулах гомологов бензола на примере толуола. Химические свойства бензола. Реакции замещения с участием бензола: галогенирование, нитрование и алкилирование. Применение бензола и его гомологов. Радикальное хлорирование бензола. Условия прове дения реакции радикального хлорирования бензола. Каталитическое гидрирование бензола. Механизм реакций электрофильного замещения: галогенирования и нитрования бензола и его гомологов. Сравнение реакционной способности бензола и толуола в реакциях замещения. Ориентирующее действие метильной группы в реакциях замещения с участием толуола.

Ориентанты I и II рода в реакциях замещения с участием аренов. Реакции по боковой цепи алкилбензолов.

Природный газ, его состав и практическое использование. Каменный уголь. Коксование каменного угля. Происхождение природных источников углеводородов. Риформинг, алкилирование и ароматизация нефтепродуктов. Экологические аспекты добычи, переработки и использования полезных ископаемых.

Расчетные задачи. 1. Нахождение молекулярной формулы органического соединения по массе (объему) продуктов сгорания.

- 2. Нахождение молекулярной формулы вещества по его относительной плотности и массовой доле элементов в соединениях.
 - 3. Комбинированные задачи.

испарениерастворителя из смеси. Плавление парафина и его отношениек воде (растворение, сравнение плотностей, смачивание). Разделение смеси бензин-вода с помощью делительной воронки.

Лабораторные опыты. 2. Изготовление парафинированной бумаги, испытание ее свойств — отношение к воде и жирам. 3. Обнаружение H_2O , сажи, CO_2 в продуктах горения свечи. 4. Изготовление моделей галогеналканов. 5. Обнаружение непредельных соединений в нефтепродуктах. 6. Ознакомление с образцами полиэтилена и полипропилена. 7. Распознавание образцов алканов и алкенов. 8. Обнаружение воды, сажи и углекислого газа в продуктах горения углеводородов. 9. Изготовление моделей алкинов и их изомеров. 10. Ознакомление с коллекцией «Каучук и резина». 11. Ознакомление с физическими свойствами бензола. 12. Изготовление и использование простейшего прибора для хроматографии. 13. Распознавание органических веществ. 14. Определение качественного состава парафина или бензола. 15. Получение ацетилена и его окисление раствором КМпО₄ или бромной водой.

Тема 4. Кислородсодержащие соединения (27 часа)

С п и р т ы. Состав и классификация спиртов. Изомерия спиртов (положение гидроксильных групп, межклассовая, углеродного скелета). Физические свойства спиртов, их получение. Межмолекулярная водородная связь. Особенности электронного строения молекул спиртов. Химические свойства спиртов, обусловленные наличием в молекулах гидроксильных групп: образование алкоголятов, взаимодействие с галогеноводородами, межмолекулярная и внутримолекулярная дегидратация, этерификация, окисление и дегидрирование спиртов. Особенности свойств многоатомных спиртов. Качественная реакция на многоатомные спирты. Важнейшие представители спиртов. Физиологическое действие метанола и этанола. Алкоголизм, его последствия. Профилактика алкоголизма.

Ф е н о л ы. Фенол, его физические свойства и получение. Химические свойства фенола как функция его строения. Кислотные свойства. Взаимное влияние атомов и групп в молекулах органических веществ на примере фенола. Поликонденсация фенола с формальдегидом. Качественная реакция на фенол. Применение фенола. Классификация фенолов. Сравнение кислотных свойств веществ, содержащих гидроксильную группу: воды, одно- и многоатомных спиртов, фенола. Электрофильное замещение в бензольном кольце. Применение производных фенола.

Альдеги ды и кето ны. Строение молекул альдегидов и кетонов, их изомерия и номенклатура. Особенности строения карбонильной группы. Физические свойства формальдегида и его гомологов. Отдельные представители альдегидов и кетонов. Химические свойства альдегидов, обусловленные наличием в молекуле карбонильной группы атомов (гидрирование, окисление аммиачными растворами оксида серебра и гидроксида меди (II)). Качественные реакции на альдегиды. Реакция поликонденсации формальдегида с фенолом. Особенности строения и химических свойств кетонов. Нуклеофильное присоединение к карбонильным соединениям. Присоединение циановодорода и гидросульфита натрия. Взаимное влияние атомов в молекулах.

Галогенирование альдегидов и кетонов по ионному механизму на свету. Качественная реакция на метилкетоны.

Карбоновых кислот и карбоксильной группы. Классификация и номенклатура карбоновых кислот. Физические свойства карбоновых кислот и их зависимость от строения молекул. Карбоновые кислоты в природе. Биологическая роль карбоновых кислот. Общие свойства неорганических и органических кислот (взаимодействие с металлами, оксидами металлов, основаниями, солями). Влияние углеводородного радикала на силу карбоновой кислоты. Реакция этерификации, условия ее проведения. Химические свойства непредельных карбоновых кислот, обусловленные наличием π-связи в молекуле. Реакции электрофильного замещения с участием бензойной кислоты.

С л о ж н ы е э ф и р ы. Строение сложных эфиров. Изомерия сложных эфиров (углеродного скелета и межклассовая). Номенклатура сложных эфиров. Обратимость реакции этерификации, гидролиз сложных эфиров. Равновесие реакции этерификации — гидролиза; факторы, влияющие на него. Решение расчетных задач на определение выхода продукта реакции (в %) от теоретически возможного, установление формулы и строения вещества по продуктам его сгорания (или гидролиза).

Жи р ы. Жиры как сложные эфиры глицерина и карбоновых кислот. Состав и строение жиров. Номенклатура и классификация жиров. Масла. Жиры в природе. Биологические функции жиров. Свойства жиров. Омыление жиров, получение мыла. Объяснение моющих свойств мыла. Гидрирование жидких жиров. Маргарин. Понятие о СМС. Объяснение моющих свойств мыла и СМС (в сравнении).

Расчетные задачи. Вычисления по термохимическим уравнениям.

Демонстрации. Физические свойства этанола, пропанола-1 и бутанола-1. Шаростержневые модели молекул изомеров с молекулярными формулами C_3H_8O и $C_4H_{10}O$. Количественное вытеснение водорода из спирта натрием. Сравнение реакций горения этилового и пропилового спиртов. Сравнение скоростей взаимодействия натрия с этанолом, пропанолом-2, глицерином.

Получение простого эфира. Получение сложного эфира. Получение этена из этанола.

Растворимость фенола в воде при обычной и повышенной температуре. Вытеснение фенола из фенолята натрия угольной кислотой. Реакция фенола с хлоридом железа (III). Реакция фенола с формальдегидом.

Шаростержневые модели молекул альдегидов и изомерных им кетонов. Окисление бензальдегида на воздухе. Реакция «серебряного зеркала». Окисление альдегидов гидроксидом меди (II).

Знакомство с физическими свойствами некоторых карбоновых кислот: муравьиной, уксусной, пропионовой, масляной, щавелевой, лимонной, олеиновой, стеариновой, бензойной. Возгонка бензойной кислоты. Отношение различных карбоновых кислот к воде. Сравнение кислотности среды водных растворов муравьиной и уксусной кислот одинаковой молярности. Получение приятно пахнущего сложного эфира. Отношение к бромной воде и раствору перманганата калия предельной и непредельной карбоновых кислот. Шаростержневые модели молекул сложных эфиров и изомерных им карбоновых кислот. Отношение сливочного, подсолнечного и машинного масла к водным растворам брома и перманганата калия.

Лабораторные опыты. 16. Растворение глицерина в воде. 17. Взаимодействие глицерина с Cu(OH)₂. 18. Ректификация смеси вода-этанол (1-2 стадии). 19. Взаимодействие фенола с раствором щелочи. 20. Распознавание растворов фенолята натрия и карбоната натрия (барботаж выдыхаемого воздуха или действие сильной кислоты). 21. Взаимодействие фенола с бромной водой. 22. Распознавание водных растворов фенола и глицерина. 23. Знакомство с физическими свойствами отдельных представителей альдегидов и кетонов: ацетальдегида, ацетона, водного раствора формальдегида 24. Окисление этанола в этаналь. 25. Реакция «серебряного зеркала». 26. Окисление альдегидов гидроксидом меди (II). 27. Получение фенолформальдегидного полимера. 28. Взаимодействие раствора уксусной кислоты с магнием (цинком), оксидом

меди (II), гидроксидом железа (III), раствором карбоната натрия, раствором стеарата калия (мыла). 29. Ознакомление с образцами сложных эфиров. 30. Отношение сложных эфиров к воде и органическим веществам (например, красителям). 31. «Выведение» жирного пятна с помощью сложного эфира.32. Растворимость жиров в воде и органических растворителях. 33. Распознавание сливочного масла и маргарина с помощью подкисленного теплого раствора КМпО₄. 34. Получение мыла. 35. Сравнение моющих свойств хозяйственного мыла и СМС в жесткой воде.

Экспериментальные задачи. 1. Распознавание растворов ацетата натрия, карбоната натрия, силиката натрия и стеарата натрия. 2. Распознавание образцов сливочного масла и маргарина. 3. Получение карбоновой кислоты из мыла. 4. Получение уксусной кислоты из ацетата натрия.

Тема 5. Углеводы (8 часов)

Моно-, ди- и полисахариды. Представители каждой группы. Биологическая роль углеводов. Их значение в жизни человека и общества.

Мо н о с а х а р и д ы. Глюкоза, ее физические свойства. Строение молекулы. Равновесия в растворе глюкозы. Зависимость химических свойств глюкозы от строения молекулы. Взаимодействие с гидроксидом меди (II) при комнатной температуреи нагревании, этерификация, реакция «серебряного зеркала», гидрирование. Реакции брожения глюкозы: спиртового, молочнокислого. Глюкоза в природе. Биологическая роль глюкозы. Применение глюкозы на основе ее свойств. Фруктоза как изомер глюкозы. Сравнение строения молекул и химических свойств глюкозы и фруктозы. Фруктоза в природе и ее биологическая роль.

Д и с а х а р и д ы. Строение дисахаридов. Восстанавливающие и невосстанавливающие дисахариды. Сахароза, лактоза, мальтоза, их строение и биологическая роль. Гидролиз дисахаридов. Промышленное получение сахарозы из природного сырья.

Полисахаридов. Крахмал и целлюлоза (сравнительная характеристика: строение, свойства, биологическая роль). Физические свойства полисахаридов. Химические свойства полисахаридов. Гидролиз полисахаридов. Качественная реакция на крахмал. Полисахариды в природе, их биологическая роль. Применение полисахаридов. Понятие об искусственных волокнах. Взаимодействие целлюлозы с неорганическими и карбоновыми кислотами — образование сложных эфиров.

Демонстрации. Образцы углеводов и изделий из них. Взаимодействие сахарозы с гидроксидом меди (II). Получение сахарата кальция и выделение сахарозы из раствора сахарата кальция. Реакция «серебряного зеркала» для глюкозы. Взаимодействие глюкозы с фуксинсернистой кислотой. Отношение растворов сахарозы и мальтозы (лактозы) к гидроксиду меди (II) при нагревании. Ознакомление с физическими свойствами целлюлозы и крахмала. Набухание целлюлозы и крахмала в воде. Получение нитрата пеллюлозы.

Лабораторные опыты. 36. Ознакомление с физическими свойствами глюкозы (аптечная упаковка, таблетки). 37. Взаимодействие с Cu(OH)₂ при различной температуре. 38. Кислотный гидролиз сахарозы. 39. Знакомство с образцами полисахаридов. 40. Обнаружение крахмала с помощью качественной реакции в меде, хлебе, клетчатке, бумаге, клейстере, йогурте, маргарине. 41. Знакомство с коллекцией волокон.

Экспериментальные задачи. 1. Распознавание растворов глюкозы и глицерина. 2. Определение наличия крахмала в меде, хлебе, маргарине.

Тема 6. Азотсодержащие соединения (10 часов)

А м и н ы. Состав и строение аминов. Классификация, изомерия и номенклатура аминов. Алифатические амины. Анилин. Получение аминов: алкилирование аммиака, восстановление нитросоединений (реакция Зинина). Физические свойства аминов. Химические свойства аминов: взаимодействие с водой и кислотами. Гомологический ряд ароматических аминов. Алкилирование и ацилирование аминов. Взаимное влияние

атомов в молекулах на примере аммиака, алифатических и ароматических аминов. Применение аминов.

А м и н о к и с л о т ы и б е л к и. Состав и строение молекул аминокислот. Изомерия аминокислот. Двойственность кислотно-основных свойств аминокислот и ее причины. Взаимодействие аминокислот с основаниями. Взаимодействие аминокислот с кислотами, образование сложных эфиров. Образование внутримолекулярных солей (биполярного иона). Реакция поликонденсации аминокислот. Синтетические волокна (капрон, энант и др.). Биологическая роль аминокислот. Применение аминокислот. Белки как природные биополимеры. Пептидная группа атомов и пептидная связь. Пептиды. Белки. Первичная, вторичная и третичная структуры белков. Химические свойства белков: горение, денатурация, гидролиз, качественные (цветные) реакции. Биологические функции белков. Значение белков. Четвертичная структура белков как агрегация белковых и небелковых молекул. Глобальная проблема белкового голодания и пути ее решения.

Н у к л е и н о в ы е к и с л о т ы. Общий план строения нуклеотидов. Понятие о пиримидиновых и пуриновых основаниях. Первичная, вторичная и третичная структуры молекулы ДНК. Биологическая роль ДНК и РНК. Генная инженерия и биотехнология. Трансгенные формы животных и растений.

Демонстрации. Физические свойства метиламина. Горение метиламина. Взаимодействие анилина и метиламина с водой и кислотами. Отношение бензола и анилина к бромной воде. Окрашивание тканей анилиновыми красителями. Обнаружение функциональных групп в молекулах аминокислот. Нейтрализация щелочи аминокислотой. Нейтрализация кислоты аминокислотой. Растворение и осаждение белков. Денатурация белков. Качественные реакции на белки. Модели молекулы ДНК и различных видов молекул РНК. Образцы продуктов питания из трансгенных форм растений и животных; лекарств и препаратов, изготовленных с помощью генной инженерии.

Лабораторные опыты. 42. Изготовление шаростержневых моделей молекул изомерных аминов. 43. Изготовление моделей изомерных молекул состава $C_3H_7NO_2$. 44. Растворение белков в воде и их коагуляция. 45. Обнаружение белка в курином яйце и в молоке.

Тема 7. Биологически активные соединения (8 часов)

В и т а м и н ы. Понятие о витаминах. Их классификация и обозначение. Нормы потребления витаминов. Водорастворимые (на примере витамина С) и жирорастворимые (на примере витаминов А и D) витамины. Понятие об авитаминозах, гипер- и гиповитаминозах. Профилактика авитаминозов. Отдельные представители водорастворимых витаминов (С, РР, группы В) и жирорастворимых витаминов (А, D, E). Их биологическая роль.

Ферментах как о биологических катализаторах белковой природы. Значение в биологии и применение в промышленности. Классификация ферментов. Особенности строения и свойств ферментов: селективность и эффективность. Зависимость активности фермента от температуры и рН среды. Особенности строения и свойств в сравнении с неорганическими катализаторами.

Г о р м о н ы. Понятие о гормонах как биологически активных веществах, выполняющих эндокринную регуляцию жизнедеятельности организмов. Классификация гормонов: стероиды, производные аминокислот, полипептидные и белковые гормоны. Отдельные представители гормонов: эстрадиол, тестостерон, инсулин, адреналин.

Лекарств: сульфамиды (стрептоцид), антибиотики (пенициллин), аспирин. Безопасные способы применения, лекарственные формы. Краткие исторические сведения о возникновении и развитии химиотерапии. Механизм действия некоторых лекарственных препаратов, строение молекул, прогнозирование свойств на основе анализа химического строения. Антибиотики, их классификация по строению, типу и спектру действия. Дисбактериоз. Наркотики, наркомания и ее профилактика.

Демонстрации. Образцы витаминных препаратов. Поливитамины. Иллюстрации фотографий животных с различными формами авитаминозов. Сравнение скорости разложения H_2O_2 под действием фермента (каталазы) и неорганических катализаторов (KI, FeCl₃, MnO₂). Плакат или кодограмма с изображением структурных формул эстрадиола, тестостерона, адреналина.

Взаимодействие адреналина с раствором FeCl₃. Белковая природа инсулина (цветные реакции на белки). Плакаты или кодограммы с формулами амида сульфаниловой кислоты, дигидрофолиевой и ложной дигидрофолиевой кислот, бензилпенициллина, тетрациклина, цефотаксима, аспирина.

Лабораторные опыты. 46. Обнаружение витамина А в растительном масле. 47. Обнаружение витамина С в яблочном соке. 48. Обнаружение витамина Д в желтке куриного яйца. 49. Ферментативный гидролиз крахмала под действием амилазы. 50. Разложение пероксида водорода под действием каталазы. 51. Действие дегидрогеназы на метиленовый синий. 52. Испытание растворимости адреналина в воде и соляной кислоте. 53. Обнаружение аспирина в готовой лекарственной форме (реакцией гидролиза или цветной реакцией с сульфатом бериллия).

Практикум (10 часов)

1. Качественный анализ органических соединений. 2. Углеводороды. 3. Спирты и фенолы. 4. Альдегиды и кетоны. 5. Карбоновые кислоты. 6. Углеводы. 7. Амины, аминокислоты, белки.8. Идентификация органических соединений. 9. Действие ферментов на различные вещества. 10. Анализ некоторых лекарственных препаратов (аспирина, парацетамола).

Планируемые результаты освоения учебного предмета «Химия» на углубленном уровне в 10 классе

В области *предметных результатов* изучение химии на углубленном уровне предоставляет ученику возможность на ступени среднего (полного) общего образования научиться:

- 1) в познавательной сфере:
- а) давать определения изученным понятиям;
- б) описывать демонстрационные и самостоятельно проведенные эксперименты, используя для этого естественный (русский) язык и язык химии;
- в) объяснять строение и свойства изученных классов и органических соединений;
- г) классифицировать изученные объекты и явления;
- д) наблюдать демонстрируемые и самостоятельно проводимые опыты, химические реакции, протекающие в природе и в быту;
- е) исследовать свойства органических веществ, определять их принадлежность к основным классам соединений;
- ж) обобщать знания и делать обоснованные выводы о закономерностях изменения свойств веществ;
- з) структурировать учебную информацию;
- и) интерпретировать информацию, полученную из других источников, оценивать ее научную достоверность;
- к) объяснять закономерности протекания химических реакций, прогнозировать возможность их протекания на основе знаний о строении вещества
- л) моделировать строение простейших молекул органических веществ;
- м) проводить расчеты по химическим формулам и уравнениям;
- н) характеризовать изученные теории;
- о) самостоятельно добывать новое для себя химическое знание, используя для этого доступные источники информации;
- 2) в *ценностно-ориентационной сфере* прогнозировать, анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с переработкой веществ;
- 3) в *трудовой сфере* самостоятельно планировать и проводить химический эксперимент, соблюдая правила безопасной работы с веществами и лабораторным оборудованием;
- 4) в сфере физической культуры оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием.

Деятельность учителя в обучении химии в средней (полной) школе направлена на достижение учащимися следующих *личностных результатов*

- 1) в *ценностно-ориентационной сфере* чувство гордости за российскую химическую науку, гуманизм, отношение к труду, целеустремленность;
- 2) в *трудовой сфере* готовность к осознанному выбору дальнейшей образовательной и профессиональной траектории;
- 3) в *познавательной* (*когнитивной*, *интеллектуальной*) *сфере* умение управлять своей познавательной деятельностью.

Метапредметными результатами освоения учащимися 10 класса программы по химии являются:

- 1) использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование) для изучения различных сторон окружающей действительности;
- 2) использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов;
- 3) умение генерировать идеи и определять средства, необходимые для их реализации;

- 4) умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;
- 5) использование различных источников для получения химической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата.

Учебно-методическое и материально-техническое обеспечение:

1) Учебно-методический комплект «Химия. 10 класс. Углубленный уровень» состоит из следующих пособий:

- 1. Химия. 10 класс. Учебник. Углубленный уровень (авторы О. С. Габриелян, И. Г. Остроумов, С. Ю. Пономарев). 368 с.
- 2. Методическое пособие. 10 класс (авторы О. С. Габриелян, А. В. Яшукова). 176 с.
- 3. Настольная книга учителя. 10 класс. Профильный уровень (авторы О. С. Габриелян, И.
- Г. Остроумов). 480 с.

2) Учебно-информационные ресурсы:

- презентации по темам;
- наглядные пособия (таблицы);
- видеодиски.

3) Технические средства обучения и учебное оборудование:

- классная магнитная доска;
- -интерактивная доска;
- -персональный компьютер;
- мультимедийный проектор;
- наглядные пособия;
- -микролаборатории для проведения практических работ и демонстрационных опытов.